1,073 research outputs found

    Non-Existence of Positive Stationary Solutions for a Class of Semi-Linear PDEs with Random Coefficients

    Full text link
    We consider a so-called random obstacle model for the motion of a hypersurface through a field of random obstacles, driven by a constant driving field. The resulting semi-linear parabolic PDE with random coefficients does not admit a global nonnegative stationary solution, which implies that an interface that was flat originally cannot get stationary. The absence of global stationary solutions is shown by proving lower bounds on the growth of stationary solutions on large domains with Dirichlet boundary conditions. Difficulties arise because the random lower order part of the equation cannot be bounded uniformly

    Cloning and characterization of four murine homeobox genes.

    Full text link

    Expansion of pinched hypersurfaces of the Euclidean and hyperbolic space by high powers of curvature

    Get PDF
    We prove convergence results for expanding curvature flows in the Euclidean and hyperbolic space. The flow speeds have the form FpF^{-p}, where p>1p>1 and FF is a positive, strictly monotone and 1-homogeneous curvature function. In particular this class includes the mean curvature F=HF=H. We prove that a certain initial pinching condition is preserved and the properly rescaled hypersurfaces converge smoothly to the unit sphere. We show that an example due to Andrews-McCoy-Zheng can be used to construct strictly convex initial hypersurfaces, for which the inverse mean curvature flow to the power p>1p>1 loses convexity, justifying the necessity to impose a certain pinching condition on the initial hypersurface.Comment: 18 pages. We included an example for the loss of convexity and pinching. In the third version we dropped the concavity assumption on F. Comments are welcom

    On a Localized Riemannian Penrose Inequality

    Full text link
    Consider a compact, orientable, three dimensional Riemannian manifold with boundary with nonnegative scalar curvature. Suppose its boundary is the disjoint union of two pieces: the horizon boundary and the outer boundary, where the horizon boundary consists of the unique closed minimal surfaces in the manifold and the outer boundary is metrically a round sphere. We obtain an inequality relating the area of the horizon boundary to the area and the total mean curvature of the outer boundary. Such a manifold may be thought as a region, surrounding the outermost apparent horizons of black holes, in a time-symmetric slice of a space-time in the context of general relativity. The inequality we establish has close ties with the Riemannian Penrose Inequality, proved by Huisken and Ilmanen, and by Bray.Comment: 16 page

    The time evolution of marginally trapped surfaces

    Full text link
    In previous work we have shown the existence of a dynamical horizon or marginally trapped tube (MOTT) containing a given strictly stable marginally outer trapped surface (MOTS). In this paper we show some results on the global behavior of MOTTs assuming the null energy condition. In particular we show that MOTSs persist in the sense that every Cauchy surface in the future of a given Cauchy surface containing a MOTS also must contain a MOTS. We describe a situation where the evolving outermost MOTS must jump during the coalescence of two seperate MOTSs. We furthermore characterize the behavior of MOTSs in the case that the principal eigenvalue vanishes under a genericity assumption. This leads to a regularity result for the tube of outermost MOTSs under the genericity assumption. This tube is then smooth up to finitely many jump times. Finally we discuss the relation of MOTSs to singularities of a space-time.Comment: 21 pages. This revision corrects some typos and contains more detailed proofs than the original versio

    Local and Global Analytic Solutions for a Class of Characteristic Problems of the Einstein Vacuum Equations in the "Double Null Foliation Gauge"

    Full text link
    The main goal of this work consists in showing that the analytic solutions for a class of characteristic problems for the Einstein vacuum equations have an existence region larger than the one provided by the Cauchy-Kowalevski theorem due to the intrinsic hyperbolicity of the Einstein equations. To prove this result we first describe a geometric way of writing the vacuum Einstein equations for the characteristic problems we are considering, in a gauge characterized by the introduction of a double null cone foliation of the spacetime. Then we prove that the existence region for the analytic solutions can be extended to a larger region which depends only on the validity of the apriori estimates for the Weyl equations, associated to the "Bel-Robinson norms". In particular if the initial data are sufficiently small we show that the analytic solution is global. Before showing how to extend the existence region we describe the same result in the case of the Burger equation, which, even if much simpler, nevertheless requires analogous logical steps required for the general proof. Due to length of this work, in this paper we mainly concentrate on the definition of the gauge we use and on writing in a "geometric" way the Einstein equations, then we show how the Cauchy-Kowalevski theorem is adapted to the characteristic problem for the Einstein equations and we describe how the existence region can be extended in the case of the Burger equation. Finally we describe the structure of the extension proof in the case of the Einstein equations. The technical parts of this last result is the content of a second paper.Comment: 68 page

    Differential Geometry of Quantum States, Observables and Evolution

    Full text link
    The geometrical description of Quantum Mechanics is reviewed and proposed as an alternative picture to the standard ones. The basic notions of observables, states, evolution and composition of systems are analised from this perspective, the relevant geometrical structures and their associated algebraic properties are highlighted, and the Qubit example is thoroughly discussed.Comment: 20 pages, comments are welcome

    The Dirac operator on untrapped surfaces

    Full text link
    We establish a sharp extrinsic lower bound for the first eigenvalue of the Dirac operator of an untrapped surface in initial data sets without apparent horizon in terms of the norm of its mean curvature vector. The equality case leads to rigidity results for the constraint equations with spherical boundary as well as uniqueness results for constant mean curvature surfaces in Minkowski space.Comment: 16 page

    Time reversal in thermoacoustic tomography - an error estimate

    Full text link
    The time reversal method in thermoacoustic tomography is used for approximating the initial pressure inside a biological object using measurements of the pressure wave made on a surface surrounding the object. This article presents error estimates for the time reversal method in the cases of variable, non-trapping sound speeds.Comment: 16 pages, 6 figures, expanded "Remarks and Conclusions" section, added one figure, added reference

    Stimulus-dependent maximum entropy models of neural population codes

    Get PDF
    Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. To be able to infer a model for this distribution from large-scale neural recordings, we introduce a stimulus-dependent maximum entropy (SDME) model---a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. The model is able to capture the single-cell response properties as well as the correlations in neural spiking due to shared stimulus and due to effective neuron-to-neuron connections. Here we show that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. As a result, the SDME model gives a more accurate account of single cell responses and in particular outperforms uncoupled models in reproducing the distributions of codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like surprise and information transmission in a neural population.Comment: 11 pages, 7 figure
    corecore